Poly(ADP-ribose) polymerase 1 inhibition improves coronary arteriole function in type 2 diabetes mellitus.

نویسندگان

  • Soo-Kyoung Choi
  • Maria Galán
  • Modar Kassan
  • Megan Partyka
  • Mohamed Trebak
  • Khalid Matrougui
چکیده

Type 2 diabetes mellitus (T2DM) is associated with microvascular dysfunction. We hypothesized that increased poly(ADP-ribose) polymerase 1 (PARP-1) activity contributes to microvascular dysfunction in T2DM. T2DM (db(-)/db(-)) and nondiabetic control (db(-)/db(+)) mice were treated with 2 different PARP-1 inhibitors (INO-1001, 5 mg/kg per day and ABT-888, 15 mg/kg per day) for 2 weeks. Isolated coronary arterioles were mounted in an arteriograph. Pressure-induced myogenic tone was significantly potentiated, whereas endothelium-dependent relaxation was significantly attenuated in diabetic mice compared with control mice. These results were associated with decreased endothelial NO synthase phosphorylation and cGMP level and increased PARP-1 activity in coronary arterioles from diabetic mice compared with control mice. Interestingly, PARP-1 inhibitors significantly reduced the potentiation of myogenic tone, improved endothelium-dependent relaxation, restored endothelial NO synthase phosphorylation and cGMP, and attenuated cleaved PARP-1. These results were supported by in vitro studies indicating that downregulation of PARP-1 in mesenteric resistance arteries using PARP-1 short hairpin RNA lentiviral particles significantly improved endothelium-dependent relaxation in mesenteric resistance arteries from diabetic mice compared with control mice. The inhibition of NO synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the endothelium-dependent relaxation in coronary arterioles and mesenteric resistance arteries from control and diabetic mice treated with PARP-1 inhibitors and PARP-1 short hairpin RNA lentiviral particles. In addition, we demonstrated that enhanced cleaved PARP-1, its binding to DNA, and DNA damage were reduced after PARP-1 inhibition in cultured endothelial cells stimulated with high glucose. We provide evidence that T2DM impairs microvascular function by an enhanced PARP-1 activity-dependent mechanism. Therefore, PARP-1 could be a potential target for overcoming diabetic microvascular complications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diabetes/Blood Vessels Poly(ADP-Ribose) Polymerase 1 Inhibition Improves Coronary Arteriole Function in Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) is associated with microvascular dysfunction. We hypothesized that increased poly(ADP-ribose) polymerase 1 (PARP-1) activity contributes to microvascular dysfunction in T2DM. T2DM (db /db ) and nondiabetic control (db /db ) mice were treated with 2 different PARP-1 inhibitors (INO-1001, 5 mg/kg per day and ABT-888, 15 mg/kg per day) for 2 weeks. Isolated coronary...

متن کامل

Enhanced NF-kB Activity Impairs Vascular Function Through PARP-1–, SP-1–, and COX-2–Dependent Mechanisms in Type 2 Diabetes

Type 2 diabetes (T2D) is associated with vascular dysfunction. We hypothesized that increased nuclear factor-kB (NF-kB) signaling contributes to vascular dysfunction in T2D. We treated type 2 diabetic (db/db) and control (db/db) mice with two NF-kB inhibitors (6 mg/kg dehydroxymethylepoxyquinomicin twice a week and 500 mg/kg/day IKK-NBD peptide) for 4 weeks. Pressure-induced myogenic tone was s...

متن کامل

Enhanced NF-κB Activity Impairs Vascular Function Through PARP-1–, SP-1–, and COX-2–Dependent Mechanisms in Type 2 Diabetes

Type 2 diabetes (T2D) is associated with vascular dysfunction. We hypothesized that increased nuclear factor-κB (NF-κB) signaling contributes to vascular dysfunction in T2D. We treated type 2 diabetic (db(-)/db(-)) and control (db(-)/db(+)) mice with two NF-κB inhibitors (6 mg/kg dehydroxymethylepoxyquinomicin twice a week and 500 μg/kg/day IKK-NBD peptide) for 4 weeks. Pressure-induced myogeni...

متن کامل

PARP-1 Variant Rs1136410 Confers Protection against Coronary Artery Disease in a Chinese Han Population: A Two-Stage Case-Control Study Involving 5643 Subjects

Inhibition of poly(ADP-ribose) polymerase (PARP) may protect against coronary artery disease (CAD) in animal models, and rs1136410, a non-synonymous single nucleotide polymorphism (SNP) in PARP-1, has a potential impact on PARP activities in vitro. This two-stage case-control study, involving 2803 CAD patients and 2840 controls, aimed to investigate the associations of PARP-1 rs1136410 with CAD...

متن کامل

Poly(ADP-ribose) polymerase contributes to the development of myocardial infarction in diabetic rats and regulates the nuclear translocation of apoptosis-inducing factor.

Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 by oxidant-mediated DNA damage is an important pathway of cell dysfunction and tissue injury during myocardial infarction. Because diabetes mellitus can substantially alter cellular signal transduction pathways, we have now investigated whether the PARP pathway also contributes to myocardial ischemia/reperfusion (MI/R) injury...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 59 5  شماره 

صفحات  -

تاریخ انتشار 2012